A generalized Fucik type eigenvalue problem for p-Laplacian
نویسندگان
چکیده
منابع مشابه
A generalized Fucik type eigenvalue problem for p-Laplacian
In this paper we study the generalized Fucik type eigenvalue for the boundary value problem of one dimensional p−Laplace type differential equations { −(φ(u′))′ = ψ(u), −T < x < T ; u(−T ) = 0, u(T ) = 0 (∗) where φ(s) = αs + − βs − , ψ(s) = λs + − μs − , p > 1. We obtain a explicit characterization of Fucik spectrum (α, β, λ, μ), i.e., for which the (*) has a nontrivial solution. (1991) AMS Su...
متن کاملTHE EIGENVALUE PROBLEM FOR THE p-LAPLACIAN-LIKE EQUATIONS
We consider the eigenvalue problem for the following p-Laplacian-like equation: −div(a(|Du| p)|Du| p−2 Du) = λf (x, u) in Ω, u = 0 on ∂Ω, where Ω ⊂ R n is a bounded smooth domain. When λ is small enough, a multiplicity result for eigen-functions are obtained. Two examples from nonlinear quantized mechanics and capillary phenomena, respectively, are given for applications of the theorems.
متن کاملThe ∞−Laplacian first eigenvalue problem
We review some results about the first eigenvalue of the infinity Laplacian operator and its first eigenfunctions in a general norm context. Those results are obtained in collaboration with several authors: V. Ferone, P. Juutinen and B. Kawohl (see [BFK], [BK1], [BJK] and [BK2]). In section 5 we make some remarks on the simplicity of the first eigenvalue of ∆∞: this will be the object of a join...
متن کاملA TWO-PHASE OBSTACLE-TYPE PROBLEM FOR THE p-LAPLACIAN
We study the so-called two-phase obstacle-type problem for the p-Laplacian when p is close to 2. We introduce a new method to obtain the optimal growth of the function from branch points, i.e. two-phase points in the free boundary where the gradient vanishes. As a by-product we can locally estimate the (n − 1)-Hausdorff-measure of the free boundary for the special case when p > 2.
متن کاملInverse nodal problem for p-Laplacian with two potential functions
In this study, inverse nodal problem is solved for the p-Laplacian operator with two potential functions. We present some asymptotic formulas which have been proved in [17,18] for the eigenvalues, nodal points and nodal lengths, provided that a potential function is unknown. Then, using the nodal points we reconstruct the potential function and its derivatives. We also introduce a solution of i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Qualitative Theory of Differential Equations
سال: 2009
ISSN: 1417-3875
DOI: 10.14232/ejqtde.2009.1.18